Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570106

RESUMO

Ferroptosis has emerged as a promising strategy for treating triple-negative breast cancer (TNBC) due to bypassing apoptosis and triggering immunogenic cell death (ICD) of tumor cells. However, the antitumor efficacy has been limited by the insufficient intracellular ferrous iron concentration required for ferroptosis and inadequate antitumor immune response. To address these limitations, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which exhibited a synergistic effect of ferroptosis, apoptosis and induced immune response for enhanced antitumor therapy. MP-FA@R-F NPs target folate receptors, which are over-expressed on the tumor cell's surface to promote intracellular uptake. The cargoes, including Rhein and Fe3O4, would be released in intracellular acid, accelerating by NIR laser irradiation. The released Rhein induced apoptosis of tumor cells mediated by the caspase 3 signal pathway, while the released Fe3O4 triggered ferroptosis through the Fenton reaction and endowed the nanoplatform with magnetic resonance imaging (MRI) capabilities. In addition, ferroptosis-dying tumor cells could release damage-associated molecular patterns (DAMPs) to promote T cell activation and infiltration for immune response and induce immunogenic cell death (ICD) for tumor immunotherapy. Together, MP-FA@R-F NPs represent a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy. STATEMENT OF SIGNIFICANCE: The massive strategies of cancer therapy based on ferroptosis have been emerging in recent years, which provided new insights into designing materials for cancer therapy. However, the antitumor efficacy of ferroptosis is still unsatisfactory, mainly due to insufficient intracellular pro-ferroptotic stimuli. In the current study, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which represented a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy.

2.
J Hazard Mater ; 467: 133714, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340564

RESUMO

The debris of plastics with a size < 5 mm, called microplastics, possess long-lived legacies of plastic pollution and a growing threat to human beings. The adverse effects and corresponding molecular mechanisms of microplastics are still largely unknown and must be prioritized. Antibiotics commonly co-existed with microplastics; the current study investigated the syngenetic toxic effect of doxycycline (Dox) and polystyrene microplastics (PS). Specifically, we found that Dox combined with PS exposure perturbed gut microbiota homeostasis in mice, which mediated brain lesions and inflammation with a concomitant decline in learning and memory behaviors through the gut-brain axis. Of note, PS exposure resulted in intestinal damage and structural change, but Dox did not accelerate the disruption of intestinal barrier integrity in PS-treated mice. Interestingly, fecal microbiota transplantation (FMT) can reverse neurological impairment caused by combined PS and Dox exposure via compensating gut microbes; therefore, the learning and memory abilities of mice were also recovered. This work not only provides insights into the syngenetic effect of microplastics and antibiotics and highlights their distal neurotoxicity through the gut-brain axis but also offers a promising strategy against their combined toxicity.


Assuntos
Doxiciclina , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Doxiciclina/toxicidade , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade , Transplante de Microbiota Fecal , Antibacterianos/toxicidade
3.
ACS Nano ; 17(23): 24384-24394, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991343

RESUMO

Cancer remains a threat to human health. However, if tumors can be detected in the early stage, then the effectiveness of cancer treatment could be significantly improved. Therefore, it is worthwhile to develop more sensitive and accurate cancer diagnostic methods. Herein, we demonstrated an azo reductase (AzoR)-activated magnetic resonance tuning (MRET) probe with a "switch-on" property for specific and sensitive tumor imaging in vivo. Specifically, Gd-labeled DNA1 (DNA1-Gd) and cyclodextrin-coated magnetic nanoparticles (MNP-CD) were employed as enhancer and quencher of MRET, respectively, while DNA2, an azobenzene (Azo) group-modified aptamer (AS1411), served as a linker between enhancer and quencher to construct the MRET probe of MNP@DNA(1-2)-Gd. In tumor tissues with high-level AzoR, the T1-weighted magnetic resonance signal of the MRET probe could be restored by intelligently regulating the switch from "OFF" to "ON" after activation with AzoR, thus accurately indicating the location of the tumor accurately. Moreover, the tumor with a 4 times smaller size than that of the normal tumor model could be imaged based on the proposed MRET probe. The as-proposed MRET-based magnetic resonance imaging strategy not only achieves tumor imaging accurately but also shows promise for early diagnosis of tumors, which might improve patients' survival rates and provide an opportunity for image-guided biomedical applications in the future.


Assuntos
Combinação Besilato de Anlodipino e Olmesartana Medoxomila , Nanopartículas , Neoplasias , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Neoplasias/diagnóstico por imagem , DNA , Meios de Contraste
4.
ACS Appl Mater Interfaces ; 15(24): 28879-28890, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37249181

RESUMO

Ferroptosis, an iron-dependent cell death driven by the lethal levels of lipid peroxidation (LPO), becomes a promising anticancer strategy. However, the anticancer efficacy of ferroptosis is often hindered by the activation of nuclear factor erythrocyte 2-associated factor 2 (Nrf2), which is an indispensable regulator of the cellular antioxidant balance by preventing the accumulation of intracellular reactive oxygen species (ROS). Herein, we present a rational design of a Tf-targeted cascade nanoplatform TPM@AM based on mesoporous polydopamine (MPDA) co-encapsulating a ferroptosis inducer (artesunate, ART) and an Nrf2-specific inhibitor (ML385) to enhance intracellular ROS and therefore amplify ferrotherapy. Transferrin (Tf) can specifically recognize the transferrin receptor (TfR) on the surface of the cell membrane, which binds and transports iron into cells. When TPM@AM is endocytosed, the high-acid tumor microenvironment and laser irradiation trigger the collapse of MPDA to release ART and ML385. Furthermore, MPDA endows the nanoplatform with photothermal capability. The nanoplatform exhibits high efficiency for synergistic tumor suppression, representing a spatiotemporal controllable therapeutic strategy for precise synergistic cancer therapy.


Assuntos
Ferroptose , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transferrina/farmacologia
5.
Acta Biomater ; 164: 487-495, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061111

RESUMO

Accurate and sensitive detection of bacteria is essential for treating bacterial infections. Herein, a pH-responsive magnetic resonance tuning (MRET) probe, whose T1-weighted signal is activated in the bacteria-infected acid microenvironment, is developed for in situ accurately magnetic resonance imaging (MRI) of bacterial infection in vivo. The MRET probe (MDVG-1) is an assembly of paramagnetic enhancer (gadolinium-modified i-motif DNA3, abbreviated as Gd-DNA3-Gd) and the precursor of superparamagnetic quencher (DNA and vancomycin-modified magnetic nanoparticle, abbreviated as MDV). The T1-weighted signal of Gd-DNA3-Gd is quenched once the formation of MDVG-1 (MRET ON). Interestingly, the MDVG-1 probe was disassembled into the monomers of Gd-DNA3-Gd and MDV under the bacteria-infected acid microenvironment, resulting significantly enhanced T1-weighted signal at the infected site (MRET OFF). The pH-responsive MRET probe-based enhanced MRI signal and bacteria targeting significantly improve the distinction between bacterial infectious tissues and sterile inflamed tissues, which provides a promising approach for accurately detecting bacterial infection in vivo. STATEMENT OF SIGNIFICANCE: Detecting pathogenic bacteria in vivo based on magnetic resonance imaging (MRI) strategy has been exploring recently. Although various bacterial-targeted MRI probes have been developed to image bacteria in vivo, the MRI signal of these MRI probes is always "on", which inevitably generates nonspecific background MRI signals, affecting the accuracy of MRI to a certain extent. In the current study, based on the magnetic resonance tuning (MRET) phenomenon, we present a pH-responsive MRET probe (MDVG-1) with T2-weighted imaging to T1-weighted imaging switchable properties to achieve in situ precise imaging of bacterial infection in vivo.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Imageamento por Ressonância Magnética/métodos , Infecções Bacterianas/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Concentração de Íons de Hidrogênio , Meios de Contraste
6.
Small ; 19(25): e2208249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929641

RESUMO

Confirming bacterial infection at an early stage and distinguishing between sterile inflammation and bacterial infection is still highly needed for efficient treatment. Here, in situ highly sensitive magnetic resonance imaging (MRI) bacterial infection in vivo based on a peptide-modified magnetic resonance tuning (MRET) probe (MPD-1) that responds to matrix metallopeptidase 2 (MMP-2) highly expressed in bacteria-infected microenvironments is achieved. MPD-1 is an assembly of magnetic nanoparticle (MNP) bearing with gadolinium ion (Gd3+ ) modified MMP-2-cleavable self-assembled peptide (P1 ) and bacteria-targeting peptide (P), and it shows T2 -weighted signal due to the assemble of MNP and MRET ON phenomenon between MNP assembly and Gd3+ . Once MPD-1 accumulates at the bacterially infected site, P1 included in MPD-1 is cleaved explicitly by MMP-2, which triggers the T2 contrast agent of MPD-1 to disassemble into the monomer of MNP, leading the recovery of T1 -weighted signal. Simultaneously, Gd3+ detaches from MNP, further enhancing the T1 -weighted signal due to MRET OFF. The sensitive MRI of Staphylococcus aureus (low to 104 CFU) at the myositis site and accurate differentiation between sterile inflammation and bacterial infection based on the proposed MPD-1 probe suggests that this novel probe would be a promising candidate for efficiently detecting bacterial infection in vivo.


Assuntos
Infecções Bacterianas , Infectologia , Imageamento por Ressonância Magnética , Infecções Bacterianas/diagnóstico , Imageamento por Ressonância Magnética/instrumentação , Infectologia/instrumentação , Infectologia/métodos , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Nanopartículas Metálicas/química , Gadolínio/química , Peptídeos/química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/normas , Animais , Camundongos , Células RAW 264.7 , Staphylococcus aureus/isolamento & purificação , Sensibilidade e Especificidade , Infecções Estafilocócicas/diagnóstico
7.
Mater Today Bio ; 16: 100353, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35865409

RESUMO

Ferroptosis provide new insights into designing nanomedicines for enhanced cancer therapy; however, its antitumor efficacy is relatively low, mainly due to self-protective mechanism of cancer cells, e.g., heat shock protein (HSP) overexpression. Since HSPs can be modified/inhibited by lipid peroxidation (LPO) ending products, we construct a nanoplatform, namely MPDA@Fe3O4-Era, to amplify intracellular reactive oxygen species (ROS) and LPO for synergistic ferrotherapy. Upon tumor acidic microenvironment and local near-infrared stimuli, this nanoplatform releases Fe3O4 and reacts with intracellular hydrogen peroxide (H2O2) to promote Fenton reaction, and yields significant intracellular ROS (specifically hydroxyl radical, •OH) and LPO. In turn, LPO ending products crosslink HSPs to destroy self-preservation pathways of cancer cells to enhance anticancer effect. Meanwhile, the released erastin inhibits system XC - signal pathway to depletes glutathione. Fe3O4 loading further provides magnetic resonance imaging T2-weighted signal to guide anti-tumor treatment. Together, this nanoplatform not only provides •OH (as a "sword" to attack tumor cells), but also inhibits system XC - signal pathway and crosslinks HSP (break down the "shield" of tumor cells) to maximize synergistic ferro-therapeutic effect. MPDA@Fe3O4-Era plus laser irradiation possessed highly efficient tumor suppression with magnified the levels of •OH and inactive glutathione peroxidase 4 (GPX4), which can promote the development of precise cooperative cancer therapy.

8.
Environ Sci Technol ; 56(12): 8319-8325, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35576522

RESUMO

Nanoparticles (NPs) can make their way to the brain and cause in situ damage, which is a concern for nanomaterial application and airborne particulate matter exposure. Our recent study indicated that respiratory exposure to silica nanoparticles (SiO2 NPs) caused unexpected cardiovascular toxic effects. However, the toxicities of SiO2 NPs in other organs have warranted further investigation. To confirm the accumulation of SiO2 NPs in the brain, we introduced SiO2 NPs with different diameters into mice via intranasal instillation (INI) and intravenous injection (IVI) in parallel. We found that SiO2 NPs may target the brain through both olfactory and systemic routes, but the size of SiO2 NPs and delivery routes both significantly affected their brain accumulation. Surprisingly, while equivalent SiO2 NPs were found in the brain regions, brain lesions were distinctly much higher in INI than in the IVI group. Mechanistically, we showed that SiO2 NPs introduced via INI induced brain apoptosis and autophagy, while the SiO2 NPs introduced via IVI only induced autophagy in the brain.


Assuntos
Nanopartículas , Dióxido de Silício , Animais , Apoptose , Encéfalo , Camundongos , Nanopartículas/toxicidade , Material Particulado , Dióxido de Silício/toxicidade
9.
Acta Biomater ; 145: 210-221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470077

RESUMO

Ferroptosis shows promising potential in tumor treatment; however, factors that compromise the efficiency of the Fenton catalyst have limited its therapeutic effectiveness. We developed a polydopamine-based nanoplatform constructed with ferric ion and sulfasalazine-loaded nanoparticles (Fe(III)PP@SAS NPs) for dual-functional ferrotherapy strategy of "sword and shield" through enhanced Fenton reaction and inactivation of glutathione peroxidase 4 (GPX4), respectively. Both the Fenton reaction-based hydroxyl radical (·OH) production and sulfasalazine-driven GPX4 inhibition induced ferroptotic cell death, thus achieving synergistic cancer therapy. Near-infrared light irradiation and acidic tumor microenvironment enhanced the release of ferric ions and sulfasalazine from the Fe(III)PP@SAS NPs. In addition, the released iron ions underwent valence state change due to Fenton reaction and thus provided a supplementary T1-weighted signal for in situ visualization of the tumor based on magnetic resonance imaging. The Fe(III)PP@SAS NPs exhibited high pro-ferroptosis performance by utilizing ·OH radicals as a "sword" to attack cancer cells and the GPX4 inhibitor to break down the "shield" of cancer cells, thus showing potential for cancer treatment. STATEMENT OF SIGNIFICANCE: Several strategies of cancer therapy based on ferroptosis have emerged in recent years, which have provided new insights into designing materials for therapeutic applications. The antitumor efficacy of ferroptosis is, however, still unsatisfactory, mainly because of insufficient intracellular pro-ferroptotic stimuli. In the current study, we report a multifunctional theranostic nanoplatform, namely Fe(III)PP@SAS, with three-fold synergistic effect; this nanoplatform has excellent theranostic potential with multifunctional ferrotherapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Indóis , Íons , Ferro/uso terapêutico , Neoplasias/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Polímeros , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Microambiente Tumoral
10.
Small ; 17(44): e2103627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34554653

RESUMO

Despite the significant advances of imaging techniques nowadays, accurate diagnosis of bacterial infections and real-time monitoring the efficacy of antibiotic therapy in vivo still remain huge challenges. Herein, a self-assembling peptide (FFYEGK) and vancomycin (Van) antibiotic molecule co-modified gadolinium (Gd) MRI nanoaggregate probe (GFV) for detecting Staphylococcus aureus (S. aureus) infection in vivo and monitoring the treatment of S. aureus-infected myositis by using daptomycin (Dap) antibiotic as model are designed and fabricated. The as-prepared GFV probe bears Van molecules, making itself good bacteria-specific targeting, and the peptide in the probe can enhance the longitudinal relaxivity rate (r1 ) after self-assembly due to the π-π stacking. The study showed that, based on the GFV probe, bacterial infections and sterile inflammation can be discriminated, and as few as 105 cfu S. aureus can be detected in vivo with high specificity and accurately. Moreover, the T1 signal of GFV probe at the S. aureus-infected site in mice correlates with the increasing time of Dap treating, indicating the possibility of monitoring the efficacy of antibacterial agents for infected mice based on the as proposed GFV probe. This study shows the potential of GFV probe for diagnosis, evaluation, and prognosis of infectious diseases in clinics.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Imageamento por Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
11.
Nanoscale ; 13(9): 4855-4870, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33624647

RESUMO

Ferroptosis therapy, which applies ferroptotic inducers to produce lethal lipid peroxidation and induce the death of tumor cells, is regarded as a promising therapeutic strategy for cancer treatment. However, there is still a challenge regarding how to increase reactive oxygen species (ROS) accumulation in the tumor microenvironment (TME) to enhance antitumor efficacy. Herein, we designed a nanosystem coated with the FDA approved poly(lactic-co-glycolic acid) (PLGA) containing ferrous ferric oxide (Fe3O4) and chlorin E6 (Ce6) for synergistic ferroptosis-photodynamic anticancer therapy. The Fe3O4-PLGA-Ce6 nanosystem can dissociate in the acidic TME to release ferrous/ferric ions and Ce6. Then, the Fenton reaction between the released ferrous/ferric ions and intracellular excess hydrogen peroxide can occur to produce hydroxyl radicals (˙OH) and induce tumor cell ferroptosis. The released Ce6 can increase the generation and accumulation of ROS under laser irradiation to offer photodynamic therapy, which can boost ferroptosis in 4T1 cells. Moreover, magnetic monodisperse Fe3O4 loading provides excellent T2-weighted magnetic resonance imaging (MRI) properties. The Fe3O4-PLGA-Ce6 nanosystem possesses MRI ability and highly efficient tumor suppression with high biocompatibility in vivo due to the synergism of photodynamic and ferroptosis antitumor therapies.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Ferro/uso terapêutico , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(1): 16-23, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33441224

RESUMO

Objective To investigate the changes of subsets of thymocytes, thymic epithelial cells (TECs) and T lymphocytes in the spleen of mice at different growth stages, and to explore the effect of Rho-associated coiled-coil protein kinase (ROCK) inhibitor on thymus regeneration in aged mice. Methods The thymus and spleens were harvested from female C57BL/6 mice at juvenile, mature adult, middle-aged and aged phases. The subsets of thymocytes, TECs and T cells in the spleen were analyzed by flow cytometry (FCM). TECs of aging mice were treated with ROCK inhibitor in vitro. Cell proliferation was observed using fluorescence immune-linked spot analyzer. Aged mice of 20-month old were treated with ROCK inhibitor in vivo. The changes of thymocytes, TECs and T cell subgroups in the spleen were detected with FCM. Results The total numbers of thymocytes and TECs as well as the number of each cell subpopulation decreased significantly with aging. The proportions of CD4+ naive T cells, CD8+ naive T cells and CD4+ recent thymus emigrant cells (RTEs) in the spleen showed significant decreasing trends although there were not obvious changes in the proportions of CD4+ T cells and CD8+ T cells in the spleen of mice during aging. ROCK inhibitor facilitated the proliferation of TECs in aging mice in vitro. ROCK inhibitor also increased the numbers of the subsets of thymocytes, TECs and T cells in the spleen of aged mice significantly. Conclusion The mouse thymus undergoes progressing degeneration with aging. ROCK inhibitor has potential of relieving the atrophy of thymus, facilitating thymus regeneration in aged mice.


Assuntos
Linfócitos T CD8-Positivos , Baço , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Subpopulações de Linfócitos T , Timo , Quinases Associadas a rho
13.
J Hazard Mater ; 404(Pt B): 124050, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33053467

RESUMO

Silica nanoparticles (SiO2 NPs) are extensively applied in various field, which increased their health risks to humans. SiO2 NPs were reported to enter into blood through inhalation and meanwhile, the potential use of SiO2 NPs as drug carriers in vivo allows them to present in blood circulation to induce inflammation of vascular endothelial cells which can be closely related with cardiovascular diseases, whilst the intrinsic mechanism has not been well understood. In this study, we found a regulation of signal axis induced by amorphous SiO2 NPs that triggers pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs). HUVECs exposed with SiO2 NPs generate excess amount of reactive oxygen species (ROS) and lactate dehydrogenase (LDH), together with the up-regulation of cell inflammatory factors [interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α)] and cell adhesion molecules [intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)]. In addition, SiO2 NPs were found to promote the translocation and release of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm, which was demonstrated to be regulated by ROS and NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Subsequently, toll-like receptor 4 (TLR4) could bind with HMGB1, up-regulate the expression of myeloid differentiation factor 88 (MyD88) and then activate nuclear factor kappa-B (NF-κB) signaling pathway, ultimately induced the inflammatory response of HUVECs. Overall, out results revealed the related signaling pathways of cell inflammation induced by amorphous SiO2 NPs, which provided new insights in understanding SiO2 NPs-induced cytotoxicity and offered safety guidance for further nanomaterial application.


Assuntos
Proteína HMGB1 , Nanopartículas , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/toxicidade , Transdução de Sinais , Dióxido de Silício/toxicidade , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
14.
Curr Pharm Des ; 27(1): 91-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32634074

RESUMO

BACKGROUND: Osteoporosis (OP) is the most common bone disease, which is listed by the World Health Organization (WHO) as the third major threat to life and health among the elderly. The etiology of OP is multifactorial, and its potential regulatory mechanism remains unclear. Long non-coding RNAs (LncRNAs) are the non-coding RNAs that are over 200 bases in the chain length. Increasing evidence indicates that LncRNAs are the important regulators of osteogenic and adipogenic differentiation, and the occurrence of OP is greatly related to the dysregulation of the bone marrow mesenchymal stem cells (BMSCs) differentiation lineage. Meanwhile, LncRNAs affect the occurrence and development of OP by regulating OP-related biological processes. METHODS: In the review, we summarized and analyzed the latest findings of LncRNAs in the pathogenesis, diagnosis and related biological processes of OP. Relevant studies published in the last five years were retrieved and selected from the PubMed database using the keywords of LncRNA and OP. RESULTS/CONCLUSION: The present study aimed to examine the underlying mechanisms and biological roles of LncRNAs in OP, as well as osteogenic and adipogenic differentiation. Our results contributed to providing new clues for the epigenetic regulation of OP, making LncRNAs the new targets for OP therapy.


Assuntos
Osteoporose , RNA Longo não Codificante , Adipogenia/genética , Idoso , Diferenciação Celular , Epigênese Genética , Humanos , Osteogênese/genética , Osteoporose/genética , RNA Longo não Codificante/genética
15.
Arch Pharm (Weinheim) ; 353(2): e1900264, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31886579

RESUMO

Twelve azole derivatives of emodin were designed to possess anti-inflammatory activity and synthesized via a two-step sequence composed of the Williamson ether reaction and N-alkylation. The anti-inflammatory properties of these compounds were evaluated in RAW264.7 cells by measuring lipopolysaccharide (LPS)-induced nitric oxide (NO) production. The introduction of imidazole and four carbons into the scaffold of emodin led to the discovery of the potent compound 7e, which showed the best inhibition of NO production among twelve analogs. In our experiential setting, the IC50 of compound 7e in NO production is 1.35 µM, which is lower than that of indomethacin. Mechanically, compound 7e effectively inhibited the protein and messenger RNA expressions of cyclooxygenase-2 and inducible NO synthase, as well as that of the proinflammatory cytokine interleukin-6, and the cytokines interleukin-1ß and tumor necrosis factor-α in the LPS-stimulated RAW 264.7 macrophages. Compound 7e exerted inhibitory effects on the nuclear factor κB pathway by reducing the LPS-induced phosphorylation of the inhibitor of NF-κB and the nuclear translation of p-p65. These results suggest the potential of compound 7e in improving inflammatory conditions and diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Azóis/farmacologia , Emodina/farmacologia , Óxido Nítrico/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Azóis/química , Relação Dose-Resposta a Droga , Emodina/síntese química , Emodina/química , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Células RAW 264.7 , Relação Estrutura-Atividade
16.
Chem Res Toxicol ; 32(6): 1051-1057, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30977640

RESUMO

Polychlorinated biphenyls (PCBs) are one of the most refractory environmental pollutants. Because of their ubiquitous existence in the biological systems (including human body), it is important to investigate their toxic behavior. Our previous findings demonstrated that a high reactive metabolite of PCB, namely PCB29-pQ, causes several programmed cell death (PCD) such as intrinsic/extrinsic apoptosis and autophagic cell death. The mechanistic study suggested the toxic actions of PCB29-pQ is largely related to its reactive oxygen species (ROS)-generation ability. Pyroptosis is a caspase 1-mediated pro-inflammatory PCD, which was discovered recently. The aim of this study is to seek the linkage between pyroptosis and PCB29-pQ exposures. We first confirmed that PCB29-pQ stimulates Hela cells to produce excess amounts of ROS. Then we found PCB29-pQ activates NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome that mediates caspase 1 activation. The activated caspase 1 (cleaved caspase 1) promotes gasdermin D (GSDMD) cleavage and translocation, which facilitates the release of intracellular inflammatory substances by forming membrane hole, ultimately leading cells to pyroptosis. PCB29-pQ-induced high-mobility group box 1 (HMGB1) release and subsequent binding to its receptors [toll-like receptor 2 (TLR2), TLR4, TLR9, and receptor for advanced glycation end products (RAGE)] are essential for the activation of NLRP3 inflammasome. The current study revealed pyroptosis as a new death mode induced by PCB29-pQ, which enriched the understanding of PCBs-induced toxicity and helped to prevent the toxic effects of residual PCBs in the environment.


Assuntos
Benzoquinonas/farmacologia , Caspase 1/metabolismo , Bifenilos Policlorados/farmacologia , Piroptose/efeitos dos fármacos , Benzoquinonas/química , Sobrevivência Celular/efeitos dos fármacos , Proteína HMGB1/metabolismo , Células HeLa , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Bifenilos Policlorados/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Células Tumorais Cultivadas
17.
Eur J Pharmacol ; 822: 128-137, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355553

RESUMO

A large population of drug candidates have failed "from bench to bed" due to unwanted toxicities. We intend to develop an alternative approach for drug discovery, that is, to seek candidates from "safe" compounds. Rebaudioside A (Reb-A) is an approved commercial sweetener from Stevia rebaudiana Bertoni. We found that Reb-A protects against carbon tetrachloride (CCl4)-induced oxidative injury in human liver hepatocellular carcinoma (HepG2) cells. Reb-A showed antioxidant activity on reducing cellular reactive oxygen species and malondialdehyde levels while increasing glutathione levels and superoxide dismutase and catalase activities. Reb-A treatment induced nuclear factor erythroid-derived 2-like 2 (Nrf2) activation and antioxidant response element activity, as well as the expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Further mechanistic studies indicated that c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), mitogen-active protein kinase (MAPK) and protein kinase C epsilon (PKCε) signaling was upregulated. Thus, the present in vitro study conclusively demonstrated that Reb-A is an activator of Nrf2 and is a potential candidate hepatoprotective agent. More importantly, the present study illustrated that seeking drug candidates from "safe" compounds is a promising strategy.


Assuntos
Citoproteção/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Edulcorantes/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Elementos de Resposta/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Expert Opin Drug Discov ; 12(10): 995-1009, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28816544

RESUMO

INTRODUCTION: Depression, anxiety and other affective disorders are globally widespread and severely debilitating human brain diseases. Despite their high prevalence and mental health impact, affective pathogenesis is poorly understood, and often remains recurrent and resistant to treatment. The lack of efficient antidepressants and presently limited conceptual innovation necessitate novel approaches and new drug targets in the field of antidepressant therapy. Areas covered: Herein, the authors discuss the emerging role of neuro-immune interactions in affective pathogenesis, which can become useful targets for CNS drug discovery, including modulating neuroinflammatory pathways to alleviate affective pathogenesis. Expert opinion: Mounting evidence implicates microglia, polyunsaturated fatty acids (PUFAs), glucocorticoids and gut microbiota in both inflammation and depression. It is suggested that novel antidepressants can be developed based on targeting microglia-, PUFAs-, glucocorticoid- and gut microbiota-mediated cellular pathways. In addition, the authors call for a wider application of novel model organisms, such as zebrafish, in studying shared, evolutionarily conserved (and therefore, core) neuro-immune mechanisms of depression.


Assuntos
Depressão/tratamento farmacológico , Descoberta de Drogas/métodos , Inflamação/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Desenho de Fármacos , Humanos , Inflamação/patologia , Terapia de Alvo Molecular
19.
J Am Chem Soc ; 139(20): 7104-7109, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28471662

RESUMO

We report on rotaxanes featuring a pyridyl-acyl hydrazone moiety on the axle as a photo/thermal-switchable macrocycle binding site. The pyridyl-acyl E-hydrazone acts as a hydrogen bonding template that directs the assembly of a benzylic amide macrocycle around the axle to form [2]rotaxanes in up to 85% yield; the corresponding Z-hydrazone thread affords no rotaxane under similar conditions. However, the E-rotaxane can be smoothly converted into the Z-rotaxane in 98% yield under UV irradiation. The X-ray crystal structures of the E- and Z-rotaxanes show different intercomponent hydrogen bonding patterns. In molecular shuttles containing pyridyl-acyl hydrazone and succinic amide ester binding sites, the change of position of the macrocycle on the thread can be achieved through a series of light irradiation and heating cycles with excellent positional integrity (>95%) and switching fidelity (98%) in each state.

20.
Food Chem Toxicol ; 75: 139-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460360

RESUMO

Ultraviolet B (UVB) radiation causes oxidative damage and inflammation, and ultimately increases the risk of skin carcinogenesis. Selenium is an essential trace element, previous studies indicated selenium deficiency impairs tissue antioxidant capacity in different experimental models. However, the synergistic effect of selenium deficiency and UVB radiation on skin damage is not clear. In the current study, our data revealed selenium deficiency resulted in further increases of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS) and phosphorylated H2AX levels, decreases of GSH level and antioxidant enzyme activities in UVB-irradiated mice. Selenium deficiency also exacerbated UVB-induced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß) and IL-6 mRNA expressions. Mechanism studies indicated that UVB-induced p38 signaling was further elevated in the skin of mice maintained with selenium deficiency diet, compared with those maintained with selenium adequate diet. Our investigation suggested that selenium deficiency diet weakens the antioxidant capacity of UVB-irradiated mice skin, which sensitizes to UV radiation-induced oxidative damage and inflammation.


Assuntos
Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo/efeitos da radiação , Selênio/deficiência , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Glutationa/metabolismo , Histonas/genética , Histonas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selênio/administração & dosagem , Pele/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...